Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 79, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486269

RESUMO

BACKGROUND: The discovery of material transfer between transplanted and host mouse photoreceptors has expanded the possibilities for utilizing transplanted photoreceptors as potential vehicles for delivering therapeutic cargo. However, previous research has not directly explored the capacity for human photoreceptors to engage in material transfer, as human photoreceptor transplantation has primarily been investigated in rodent models of late-stage retinal disease, which lack host photoreceptors. METHODS: In this study, we transplanted human stem-cell derived photoreceptors purified from human retinal organoids at different ontological ages (weeks 10, 14, or 20) into mouse models with intact photoreceptors and assessed transfer of human proteins and organelles to mouse photoreceptors. RESULTS: Unexpectedly, regardless of donor age or mouse recipient background, human photoreceptors did not transfer material in the mouse retina, though a rare subset of donor cells (< 5%) integrated into the mouse photoreceptor cell layer. To investigate the possibility that a species barrier impeded transfer, we used a flow cytometric assay to examine material transfer in vitro. Interestingly, dissociated human photoreceptors transferred fluorescent protein with each other in vitro, yet no transfer was detected in co-cultures of human and mouse photoreceptors, suggesting that material transfer is species specific. CONCLUSIONS: While xenograft models are not a tractable system to study material transfer of human photoreceptors, these findings demonstrate that human retinal organoid-derived photoreceptors are competent donors for material transfer and thus may be useful to treat retinal degenerative disease.


Assuntos
Retina , Degeneração Retiniana , Humanos , Animais , Camundongos , Doadores de Tecidos , Células Fotorreceptoras de Vertebrados , Degeneração Retiniana/terapia , Bioensaio , Modelos Animais de Doenças
2.
Commun Biol ; 7(1): 34, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182732

RESUMO

SNARE-mediated vesicular transport is thought to play roles in photoreceptor glutamate exocytosis and photopigment delivery. However, the functions of Synaptosomal-associated protein (SNAP) isoforms in photoreceptors are unknown. Here, we revisit the expression of SNAP-23 and SNAP-25 and generate photoreceptor-specific knockout mice to investigate their roles. Although we find that SNAP-23 shows weak mRNA expression in photoreceptors, SNAP-23 removal does not affect retinal morphology or vision. SNAP-25 mRNA is developmentally regulated and undergoes mRNA trafficking to photoreceptor inner segments at postnatal day 9 (P9). SNAP-25 knockout photoreceptors develop normally until P9 but degenerate by P14 resulting in severe retinal thinning. Photoreceptor loss in SNAP-25 knockout mice is associated with abolished electroretinograms and vision loss. We find mistrafficked photopigments, enlarged synaptic vesicles, and abnormal synaptic ribbons which potentially underlie photoreceptor degeneration. Our results conclude that SNAP-25, but not SNAP-23, mediates photopigment delivery and synaptic functioning required for photoreceptor development, survival, and function.


Assuntos
Células Fotorreceptoras de Vertebrados , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteína 25 Associada a Sinaptossoma , Animais , Camundongos , Transporte Biológico , Citoesqueleto , Ácido Glutâmico , Camundongos Knockout , RNA Mensageiro , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(42): e2308204120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812728

RESUMO

Migration is essential for the laminar stratification and connectivity of neurons in the central nervous system. In the retina, photoreceptors (PRs) migrate to positions according to birthdate, with early-born cells localizing to the basal-most side of the outer nuclear layer. It was proposed that apical progenitor mitoses physically drive these basal translocations non-cell autonomously, but direct evidence is lacking, and whether other mechanisms participate is unknown. Here, combining loss- or gain-of-function assays to manipulate cell cycle regulators (Sonic hedgehog, Cdkn1a/p21) with an in vivo lentiviral labelling strategy, we demonstrate that progenitor division is one of two forces driving basal translocation of rod soma. Indeed, replacing Shh activity rescues abnormal rod translocation in retinal explants. Unexpectedly, we show that rod differentiation also promotes rod soma translocation. While outer segment function or formation is dispensable, Crx and SNARE-dependent synaptic function are essential. Thus, both non-cell and cell autonomous mechanisms underpin PR soma sublaminar positioning in the mammalian retina.


Assuntos
Neurossecreção , Células Fotorreceptoras Retinianas Bastonetes , Animais , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Proteínas Hedgehog/metabolismo , Retina/metabolismo , Diferenciação Celular , Mamíferos
4.
Dev Cell ; 58(20): 2015-2031.e8, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37774709

RESUMO

The microenvironment profoundly influences tumor initiation across numerous tissues but remains understudied in brain tumors. In the cerebellum, canonical Wnt signaling controlled by Norrin/Frizzled4 (Fzd4) activation in meningeal endothelial cells is a potent inhibitor of preneoplasia and tumor progression in mouse models of Sonic hedgehog medulloblastoma (Shh-MB). Single-cell transcriptome profiling and phenotyping of the meninges indicate that Norrin/Frizzled4 sustains the activation of meningeal macrophages (mMΦs), characterized by Lyve1 and CXCL4 expression, during the critical preneoplastic period. Depleting mMΦs during this period enhances preneoplasia and tumorigenesis, phenocopying the effects of Norrin loss. The anti-tumorigenic function of mMΦs is derived from the expression of CXCL4, which counters CXCL12/CXCR4 signaling in pre-tumor cells, thereby inhibiting cell-cycle progression and promoting migration away from the pre-tumor niche. These findings identify a pivotal role for mMΦs as key mediators in chemokine-regulated anti-cancer crosstalk between the stroma and pre-tumor cells in the control of MB initiation.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Camundongos , Animais , Meduloblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Células Endoteliais/metabolismo , Via de Sinalização Wnt , Neoplasias Cerebelares/metabolismo , Microambiente Tumoral
5.
Stem Cell Res Ther ; 14(1): 212, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605279

RESUMO

BACKGROUND: Retinitis pigmentosa (RP) is an inherited retinal disease that results in photoreceptor degeneration, leading to severe vision loss or blindness. Due to its genetic heterogeneity, developing a new gene therapy to correct every genetic mutation contributing to its progression is infeasible. Photoreceptor transplantation can be harnessed to restore vision; however, this approach is limited by poor cell survival and synaptic integration into the neural retina. Thus, we developed a combined cell and gene therapy that is expected to protect photoreceptors in most, if not all, cases of RP. METHODS: Human embryonic stem cells (hESCs) modified with our FailSafe™ system were genetically engineered to overexpress sCX3CL1, an inhibitor of microglia activation that has been shown to preserve photoreceptor survival and function in mouse models of RP, independent of the genetic cause. These cells were differentiated into human retinal pigment epithelium (hRPE) cells and used as therapeutic cells due to their longevity and safety, both of which have been demonstrated in preclinical and clinical studies. Transgenic hRPE were delivered into the subretinal space of immunodeficient mice and the rd10 mouse model of RP to evaluate donor cell survival and retention of transgene expression. The outer nuclear layer was quantified to assess photoreceptor protection. RESULTS: Transgenic FailSafe™ hRPE (FS-hRPE) cells can survive for at least four months in the retina of immunodeficient mice and retain transgene expression. However, these cells do not persist beyond two weeks post-injection in the retina of immunocompetent rd10 recipients, despite Cyclosporine A treatment. Nevertheless, sCX3CL1-expressing FailSafe™ hRPE cells prevented photoreceptor degeneration in a local acting manner during the duration of their presence in the subretinal space. CONCLUSIONS: Transgenic hESCs differentiate into hRPE cells and retain sCX3CL1 transgene expression both in vitro and in vivo. Moreover, hRPE cells delivered to the subretinal space of rd10 mice prevented photoreceptor degeneration in a local-acting manner, suggesting that this approach could have applications for preserving photoreceptors in specific subregions of the retina, such as the macula. Overall, our study not only reveals the potential of a combined cell and gene therapy for the treatment of RP, but also the possibility of using hRPE cells to deliver therapeutic biologics in situ to treat diseases over long-term.


Assuntos
Epitélio Pigmentado da Retina , Retinose Pigmentar , Humanos , Animais , Camundongos , Células Fotorreceptoras Retinianas Bastonetes , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retina , Animais Geneticamente Modificados , Modelos Animais de Doenças , Quimiocina CX3CL1
6.
Biomaterials ; 298: 122140, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37163876

RESUMO

Cell therapy holds tremendous promise for vision restoration; yet donor cell survival and integration continue to limit efficacy of these strategies. Transplanted photoreceptors, which mediate light sensitivity in the retina, transfer cytoplasmic components to host photoreceptors instead of integrating into the tissue. Donor cell material transfer could, therefore, function as a protein augmentation strategy to restore photoreceptor function. Biomaterials, such as hyaluronan-based hydrogels, can support donor cell survival but have not been evaluated for effects on material transfer. With increased survival, we hypothesized that we would achieve greater material transfer; however, the opposite occurred. Photoreceptors delivered to the subretinal space in mice in a hyaluronan and methylcellulose (HAMC) hydrogel showed reduced material transfer. We examined mitochondria transfer in vitro and cytosolic protein transfer in vivo and demonstrate that HAMC significantly reduced transfer in both contexts, which we ascribe to reduced cell-cell contact. Nanotube-like donor cell protrusions were significantly reduced in the hydrogel-transplanted photoreceptors compared to the saline control group, which suggests that HAMC limits the contact required to the host retina for transfer. Thus, HAMC can be used to manipulate the behaviour of transplanted donor cells in cell therapy strategies.


Assuntos
Ácido Hialurônico , Hidrogéis , Camundongos , Animais , Retina , Materiais Biocompatíveis
7.
iScience ; 26(4): 106361, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37009209

RESUMO

Neuronal repopulation achieved through transplantation or transdifferentiation from endogenous sources holds tremendous potential for restoring function in chronic neurodegenerative disease or acute injury. Key to the evaluation of neuronal engraftment is the definitive discrimination of new or donor neurons from preexisting cells within the host tissue. Recent work has identified mechanisms by which genetically encoded donor cell reporters can be transferred to host neurons through intercellular material transfer. In addition, labeling transplanted and endogenously transdifferentiated neurons through viral vector transduction can yield misexpression in host cells in some circumstances. These issues can confound the tracking and evaluation of repopulated neurons in regenerative experimental paradigms. Using the retina as an example, we discuss common reasons for artifactual labeling of endogenous host neurons with donor cell reporters and suggest strategies to prevent erroneous conclusions based on misidentification of cell origin.

8.
Elife ; 112022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459481

RESUMO

An important question in organogenesis is how tissue-specific transcription factors interact with signaling pathways. In some cases, transcription factors define the context for how signaling pathways elicit tissue- or cell-specific responses, and in others, they influence signaling through transcriptional regulation of signaling components or accessory factors. We previously showed that during optic vesicle patterning, the Lim-homeodomain transcription factor Lhx2 has a contextual role by linking the Sonic Hedgehog (Shh) pathway to downstream targets without regulating the pathway itself. Here, we show that during early retinal neurogenesis in mice, Lhx2 is a multilevel regulator of Shh signaling. Specifically, Lhx2 acts cell autonomously to control the expression of pathway genes required for efficient activation and maintenance of signaling in retinal progenitor cells. The Shh co-receptors Cdon and Gas1 are candidate direct targets of Lhx2 that mediate pathway activation, whereas Lhx2 directly or indirectly promotes the expression of other pathway components important for activation and sustained signaling. We also provide genetic evidence suggesting that Lhx2 has a contextual role by linking the Shh pathway to downstream targets. Through these interactions, Lhx2 establishes the competence for Shh signaling in retinal progenitors and the context for the pathway to promote early retinal neurogenesis. The temporally distinct interactions between Lhx2 and the Shh pathway in retinal development illustrate how transcription factors and signaling pathways adapt to meet stage-dependent requirements of tissue formation.


Assuntos
Proteínas Hedgehog , Neurogênese , Camundongos , Animais , Neurogênese/genética , Retina , Transdução de Sinais , Fatores de Transcrição , Proteínas com Homeodomínio LIM/genética
9.
Adv Mater ; 34(34): e2202612, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35790035

RESUMO

With the advent of increasingly complex combination strategies of biologics, independent control over their delivery is the key to their efficacy; however, current approaches are hindered by the limited independent tunability of their release rates. To overcome these limitations, directed evolution is used to engineer highly specific, low affinity affibody binding partners to multiple therapeutic proteins to independently control protein release rates. As a proof-of-concept, specific affibody binding partners for two proteins with broad therapeutic utility: insulin-like growth factor-1 (IGF-1) and pigment epithelium-derived factor (PEDF) are identified. Protein-affibody binding interactions specific to these target proteins with equilibrium dissociation constants (KD ) between 10-7 and 10-8 m are discovered. The affibodies are covalently bound to the backbone of crosslinked hydrogels using click chemistry, enabling sustained, independent, and simultaneous release of bioactive IGF-1 and PEDF over 7 days. The system is tested with C57BL/6J mice in vivo, and the affibody-controlled release of IGF-1 results in sustained activity when compared to bolus IGF-1 delivery. This work demonstrates a new, broadly applicable approach to tune the release of therapeutic proteins simultaneously and independently and thus the way for precise control over the delivery of multicomponent therapies is paved.


Assuntos
Hidrogéis , Fator de Crescimento Insulin-Like I , Animais , Biopolímeros , Preparações de Ação Retardada , Camundongos , Camundongos Endogâmicos C57BL
10.
Commun Biol ; 5(1): 569, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680976

RESUMO

Spontaneous mouse models of medulloblastoma (MB) offer a tractable system to study malignant progression in the brain. Mouse Sonic Hedgehog (Shh)-MB tumours first appear at postnatal stages as preneoplastic changes on the surface of the cerebellum, the external granule layer (EGL). Here we compared traditional histology and 3DISCO tissue clearing in combination with light sheet fluorescence microscopy (LSFM) to identify and quantify preneoplastic changes induced by disrupting stromal Norrin/Frizzled 4 (Fzd4) signalling, a potent tumour inhibitory signal in two mouse models of spontaneous Shh-MB. We show that 3DISCO-LSFM is as accurate as traditional histology for detecting Norrin/Fzd4-associated changes in PNL formation in Ptch+/- mice and EGL hyperplasia in Neurod2-SmoA1+/- mice. Moreover, we show that the anti-tumour effect of Norrin/Fzd4 signalling is restricted to the posterior region of the cerebellum and is characterized by defective neural progenitor migration away from the EGL. In conclusion, 3DISCO-LSFM is a valid way to monitor tumour initiation events in mouse MB models and reveals an unanticipated regional restriction of stromal signalling in constraining tumour initiation.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cerebelo/metabolismo , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Imageamento Tridimensional , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos
11.
EMBO J ; 40(22): e107264, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494680

RESUMO

Emerging evidence suggests that intracellular molecules and organelles transfer between cells during embryonic development, tissue homeostasis and disease. We and others recently showed that transplanted and host photoreceptors engage in bidirectional transfer of intracellular material in the recipient retina, a process termed material transfer (MT). We used cell transplantation, advanced tissue imaging approaches, genetic and pharmacologic interventions and primary cell culture to characterize and elucidate the mechanism of MT. We show that MT correlates with donor cell persistence and the accumulation of donor-derived proteins, mitochondria and transcripts in acceptor cells in vivo. MT requires cell contact in vitro and is associated with the formation of stable microtubule-containing protrusions, termed photoreceptor nanotubes (Ph NTs), that connect donor and host cells in vivo and in vitro. Ph NTs mediate GFP transfer between connected cells in vitro. Furthermore, interfering with Ph NT outgrowth by targeting Rho GTPase-dependent actin remodelling inhibits MT in vivo. Collectively, our observations provide evidence for horizontal exchange of intracellular material via nanotube-like connections between neurons in vivo.


Assuntos
Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestrutura , Retina/citologia , Actinas/metabolismo , Animais , Transporte Biológico , Sobrevivência Celular , Vesículas Extracelulares , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Retina/fisiologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Transducina/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
12.
iScience ; 24(8): 102905, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34430805

RESUMO

The mouse eye is used to model central nervous system development, pathology, angiogenesis, tumorigenesis, and regenerative therapies. To facilitate the analysis of these processes, we developed an optimized tissue clearing and depigmentation protocol, termed InVision, that permits whole-eye fluorescent marker tissue imaging. We validated this method for the analysis of normal and degenerative retinal architecture, transgenic fluorescent reporter expression, immunostaining and three-dimensional volumetric (3DV) analysis of retinoblastoma and angiogenesis. We also used this method to characterize material transfer (MT), a recently described phenomenon of horizontal protein exchange that occurs between transplanted and recipient photoreceptors. 3D spatial distribution analysis of MT in transplanted retinas suggests that MT of cytoplasmic GFP between photoreceptors is mediated by short-range, proximity-dependent cellular interactions. The InVision protocol will allow investigators working across multiple cell biological disciplines to generate novel insights into the local cellular networks involved in cell biological processes in the eye.

13.
Biomaterials ; 271: 120750, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33725584

RESUMO

Vitreous substitutes are clinically used to maintain retinal apposition and preserve retinal function; yet the most used substitutes are gases and oils which have disadvantages including strict face-down positioning post-surgery and the need for subsequent surgical removal, respectively. We have engineered a vitreous substitute comprised of a novel hyaluronan-oxime crosslinked hydrogel. Hyaluronan, which is naturally abundant in the vitreous of the eye, is chemically modified to crosslink with poly(ethylene glycol)-tetraoxyamine via oxime chemistry to produce a vitreous substitute that has similar physical properties to the native vitreous including refractive index, density and transparency. The oxime hydrogel is cytocompatible in vitro with photoreceptors from mouse retinal explants and biocompatible in rabbit eyes as determined by histology of the inner nuclear layer and photoreceptors in the outer nuclear layer. The ocular pressure in the rabbit eyes was consistent over 56 d, demonstrating limited to no swelling. Our vitreous substitute was stable in vivo over 28 d after which it began to degrade, with approximately 50% loss by day 56. We confirmed that the implanted hydrogel did not impact retina function using electroretinography over 90 days versus eyes injected with balanced saline solution. This new oxime hydrogel provides a significant improvement over the status quo as a vitreous substitute.


Assuntos
Ácido Hialurônico , Hidrogéis , Animais , Biomimética , Camundongos , Oximas , Coelhos , Retina , Corpo Vítreo
14.
Mol Cell Oncol ; 7(4): 1758540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944619

RESUMO

We recently reported a novel role of the atypical Wnt ligand, NORRIN, in mediating the proliferation and stemness of glioblastoma stem cells. Mechanistic and functional analysis revealed context-specific phenotypes in which NORRIN can induce opposite effects on the tumor outcome, depending on the underlying molecular signature of the tumor cells.

15.
J Clin Invest ; 130(6): 3069-3086, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182224

RESUMO

Glioblastoma multiforme (GBM) contains a subpopulation of cells, GBM stem cells (GSCs), that maintain the bulk tumor and represent a key therapeutic target. Norrin is a Wnt ligand that binds Frizzled class receptor 4 (FZD4) to activate canonical Wnt signaling. Although Norrin, encoded by NDP, has a well-described role in vascular development, its function in human tumorigenesis is largely unexplored. Here, we show that NDP expression is enriched in neurological cancers, including GBM, and its levels positively correlated with survival in a GBM subtype defined by low expression of ASCL1, a proneural factor. We investigated the function of Norrin and FZD4 in GSCs and found that it mediated opposing tumor-suppressive and -promoting effects on ASCL1lo and ASCL1hi GSCs. Consistent with a potential tumor-suppressive effect of Norrin suggested by the tumor outcome data, we found that Norrin signaling through FZD4 inhibited growth in ASCL1lo GSCs. In contrast, in ASCL1hi GSCs Norrin promoted Notch signaling, independently of WNT, to promote tumor progression. Forced ASCL1 expression reversed the tumor-suppressive effects of Norrin in ASCL1lo GSCs. Our results identify Norrin as a modulator of human brain cancer progression and reveal an unanticipated Notch-mediated function of Norrin in regulating cancer stem cell biology. This study identifies an unanticipated role of Norrin in human brain cancer progression. In addition, we provide preclinical evidence suggesting Norrin and canonical Wnt signaling as potential therapeutic targets for GBM subtype-restricted cancer stem cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas do Olho/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteínas do Olho/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Receptores Notch/genética , Proteínas Wnt/genética
16.
Stem Cells ; 37(4): 529-541, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30715780

RESUMO

The goal of photoreceptor transplantation is to establish functional synaptic connectivity between donor cells and second-order neurons in the host retina. There is, however, limited evidence of donor-host photoreceptor connectivity post-transplant. In this report, we investigated the effect of the host retinal environment on donor photoreceptor neurite outgrowth in vivo and identified a neurite outgrowth-promoting effect of host Crx(-/-) retinas following transplantation of purified photoreceptors expressing green fluorescent protein (GFP). To investigate the noncell autonomous factors that influence donor cell neurite outgrowth in vitro, we established a donor-host coculture system using postnatal retinal aggregates. Retinal cell aggregation is sensitive to several factors, including plate coating substrate, cell density, and the presence of Müller glia. Donor photoreceptors exhibit motility in aggregate cultures and can engraft into established aggregate structures. The neurite outgrowth-promoting phenotype observed in Crx(-/-) recipients in vivo is recapitulated in donor-host aggregate cocultures, demonstrating the utility of this surrogate in vitro approach. The removal of Müller glia from host aggregates reduced donor cell neurite outgrowth, identifying a role for this cell type in donor-host signaling. Although disruption of chondroitin sulfate proteoglycans in aggregates had no effect on the neurite outgrowth of donor photoreceptors, disruption of Rho/ROCK signaling enhanced outgrowth. Collectively, these data show a novel role of Crx, Müller glia, and Rho/ROCK signaling in controlling neurite outgrowth and provide an accessible in vitro model that can be used to screen for factors that regulate donor-host connectivity. Stem Cells 2019;37:529-541.


Assuntos
Neuroglia/metabolismo , Crescimento Neuronal/genética , Células Fotorreceptoras/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Técnicas de Genotipagem , Humanos , Camundongos , Transdução de Sinais
17.
J Control Release ; 293: 10-20, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30419267

RESUMO

Therapeutic protein delivery directly to the eye is a promising strategy to treat retinal degeneration; yet, the high risks of local drug overdose and cataracts associated with bolus injection have limited progress, requiring the development of sustained protein delivery strategies. Since the vitreous humor itself is a gel, hydrogel-based release systems are a sensible solution for sustained intravitreal protein delivery. Using ciliary neurotrophic factor (CNTF) as a model protein for ocular treatment, we investigated the use of an intravitreal, affinity-based release system for protein delivery. To sustain CNTF release, we took advantage of the affinity between Src homology 3 (SH3) and its peptide binding partners: CNTF was expressed as a fusion protein with SH3, and a thermogel of hyaluronan and methylcellulose (HAMC) was modified with SH3 binding peptides. Using a mathematical model, the hydrogel composition was successfully designed to release CNTF-SH3 over 7 days. The stability and bioactivity of the released protein were similar to those of commercial CNTF. Intravitreal injections of the bioengineered thermogel showed successful delivery of CNTF-SH3 to the mouse retina, with expected transient downregulation of phototransduction genes (e.g., rhodopsin, S-opsin, M-opsin, Gnat 1 and 2), upregulation of STAT1 and STAT3 expression, and upregulation of STAT3 phosphorylation. This constitutes the first demonstration of intravitreal protein release from a hydrogel. Immunohistochemical analysis of the retinal tissues of injected eyes confirmed the biocompatibility of the delivery vehicle, paving the way towards new intravitreal protein delivery strategies.


Assuntos
Fator Neurotrófico Ciliar/administração & dosagem , Hidrogéis/administração & dosagem , Retina/metabolismo , Animais , Preparações de Ação Retardada/administração & dosagem , Feminino , Ácido Hialurônico/administração & dosagem , Injeções Intravítreas , Masculino , Metilcelulose/administração & dosagem , Camundongos Endogâmicos C57BL , Modelos Teóricos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo
18.
Stem Cell Res ; 33: 215-227, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30453152

RESUMO

During development, multipotent progenitors undergo temporally-restricted differentiation into post-mitotic retinal cells; however, the mechanisms of progenitor division that occurs during retinogenesis remain controversial. Using clonal analyses (lineage tracing and single cell cultures), we identify rod versus cone lineage-specific progenitors derived from both adult retinal stem cells and embryonic neural retinal precursors. Taurine and retinoic acid are shown to act in an instructive and lineage-restricted manner early in the progenitor lineage hierarchy to produce rod-restricted progenitors from stem cell progeny. We also identify an instructive, but lineage-independent, mechanism for the specification of cone-restricted progenitors through the suppression of multiple differentiation signaling pathways. These data indicate that exogenous signals play critical roles in directing lineage decisions and resulting in fate-restricted rod or cone photoreceptor progenitors in culture. Additional factors may be involved in governing photoreceptor fates in vivo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Camundongos
19.
Front Neural Circuits ; 12: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559897

RESUMO

Considerable research effort has been invested into the transplantation of mammalian photoreceptors into healthy and degenerating mouse eyes. Several platforms of rod and cone fluorescent reporting have been central to refining the isolation, purification and transplantation of photoreceptors. The tracking of engrafted cells, including identifying the position, morphology and degree of donor cell integration post-transplant is highly dependent on the use of fluorescent protein reporters. Improvements in imaging and analysis of transplant recipients have revealed that donor cell fluorescent reporters can transfer into host tissue though a process termed material exchange (ME). This recent discovery has chaperoned a new era of interpretation when reviewing the field's use of dissociated donor cell preparations, and has prompted scientists to re-examine how we use and interpret the information derived from fluorescence-based tracking tools. In this review, we describe the status of our understanding of ME in photoreceptor transplantation. In addition, we discuss the impact of this discovery on several aspects of historical rod and cone transplantation data, and provide insight into future standards and approaches to advance the field of cell engraftment.


Assuntos
Células Fotorreceptoras Retinianas Cones/transplante , Animais , Comunicação Celular , Humanos , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/fisiopatologia , Degeneração Retiniana/terapia
20.
Cell Rep ; 20(1): 99-111, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683327

RESUMO

Developing strategies that promote axonal regeneration within the injured CNS is a major therapeutic challenge, as axonal outgrowth is potently inhibited by myelin and the glial scar. Although regeneration can be achieved using the genetic deletion of PTEN, a negative regulator of the mTOR pathway, this requires inactivation prior to nerve injury, thus precluding therapeutic application. Here, we show that, remarkably, fibroblast-derived exosomes (FD exosomes) enable neurite growth on CNS inhibitory proteins. Moreover, we demonstrate that, upon treatment with FD exosomes, Wnt10b is recruited toward lipid rafts and activates mTOR via GSK3ß and TSC2. Application of FD exosomes shortly after optic nerve injury promoted robust axonal regeneration, which was strongly reduced in Wnt10b-deleted animals. This work uncovers an intercellular signaling pathway whereby FD exosomes mobilize an autocrine Wnt10b-mTOR pathway, thereby awakening the intrinsic capacity of neurons for regeneration, an important step toward healing the injured CNS.


Assuntos
Comunicação Autócrina , Axônios/metabolismo , Exossomos/metabolismo , Regeneração Nervosa , Traumatismos do Nervo Óptico/metabolismo , Proteínas Wnt/metabolismo , Animais , Axônios/fisiologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Microdomínios da Membrana/metabolismo , Camundongos , Nervo Óptico/metabolismo , Nervo Óptico/fisiologia , Células PC12 , Ratos , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...